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ABSTRACT

This report extends the stochastic integral of Ito to allow for a certain

class of anticipating integrands. Probabilistic and computational results con-

cerning this extension are presented. And iterated integrals are discussed.

The motivation for this extension stems from the Ito-Volterra equation.

This equation arises from feedback in the presence of white noise, and cannot

be inverted using classical stochastic integrals. The inversion involving the

extended integrals appears at the end of the report.

AMS (MOS) Subject Classifications: 60H20, 45D05

Key Words: Brownian Motion, Stochastic Integral, Volterra Equation.
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SIGNIFICANCE AND EXPLANATION

" In the analysis of feedback systems such as coupled electrical circuitry
and economic life cycles, one is led to consider diagrams such as the one shown
below. The box T sicgnifies a transfer from the input F (e.g. current, in-
come) to the output §£. Junction J 1is a step-up or step-down point. Here

either some fraction of £ is diverted for external consumption, or else §

is scaled up. And the remainder in the loop E, alona with an external driving

force E, is used to drive the process.

; X ; o
E(t) ( \ F(t) . £(t)
e i bt 1 >
\/// " ]
(\\_ /_,/
A
B |
£(t) J
\//R\

If the junction J involves a white noise (e.g. thermal noise, stock plans)
then the eqguation governing the process involves a stochastic integral which
cannot be inverted using the classical theory of stochastic integration. Thus
the equation cannot be solved for £.

This report discusses the construction of an extension for the classical
stochastic integral, designed to overcome the above limitation. Included are

properties of this extension, and the subject of iterated stochastic integration.

The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the author of this report.




A FUBINI THEOREM FOR ITERATED STOCHASTIC INTEGRALS
Marc A. Berger

§1. INTRODUCTION
Shown in the figure below is a typical feedback diagram. The box T signifies a trans-

fer from the input F to the output £. For example,

t
(1.1) £(t) = [ o(t-1)F(1)dt , t>o0 .
0

Junction J 1is a step~up or step-down point. Here either some fraction of £ 1is diverted

for external consumption,

|
F |
b S WA T L M~ ’ 1) #
| i

or else £ 1is scaled up. Thus the remainder in the loop is

(1.2) £ =at

If the process uses this remainder E to drive itself, along with an external driving force

E, then
(1.3) F=B+E .

Combining (I.1), (1.2), (1.3) it follows that the equation governing the system is

t t
(1.4) £(t) = [ olt-ma(nE(ndr = [ o(e-1)E(T)AT, t > 0
0 0

Suppose, however, that a is in the form of a noise

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and by the National
Science Foundation under Grant No. MCS75-17385 a0l.




D =
(1.5) 1 u1 +a.z

where 2z 1is a white noise. Then (1.4) becomes

T |
£(e) - [ ot-ma (DE(MAT = [ olt=1)a, (1) E(1)dR(T)
0 0
(1.6) .
= [ ot-DE(v)Ar, t >0
0
where 8 is a Brownian motion
(-
a.m Blt) = [ z(v)dr , t>0 .
0

This equation is an Ito-Volterra equation, the class of which is discussed in §5. The

difficulty lies in the inability to represent the iterates of the operator
t
(1.8) TE(t) = [ o(t-T)a (V) £(1)dB(T) . t 20
0
in a similar form. And this is precisely because the integrand in a stochastic integral must

be nonanticipating. Thus there is no meaning to an integral like

t &
(1.9) [ 1 ott-tpolr =0 a, (1) dB(1)) la, (D) £(T)AB(T) .
O

Ito [8] has defined an integral

L 3 -
1(t) = [ [ glr;,1,)d8(1,)dB(1,)
00

where g ¢ L2([0,t] x [0,t]). His definition there is
t T2
(1.10) I(e) = {)% fg(ry,1,) + glr,y,t))1dB(1,)dB(T,), t >0 .
This integral behaves in many ways like a single stochastic integral, but not like two

iterated integrals. For example,

tt
% % 6(t ) blr,)dB(r )d8 (1)
(1.11)

t t €
= [f ¢(0)dB(D1If p(1)aB(T)] = [ ¢(D)y(rIdr, t >0
0 0 0

for ¢,y € Lz((O.t]). Thus, although according to (1.10) the natural definition for integrals

like (1.9) should be

=




. ’ d
g(r LY t)dB(11) B (1)

o'
-

(1.12)

5
0

o™ a

q(rl,r,t)dB(Yl)dB(T) ¢« £ >0

this has the disadvantage that it really is a two-dimensional integral, but not an iterated
one-dimensional integral.

To this end we present an extension of the stochastic integral which allows one to solve
equations like (1.6) by iterating operators like (1.8). This extension is, roughly speaking,
the unique extension which allows integrals to be iterated one variable at a time, in the

usual fashion. Thus, for example, a formula like (1.11) becomes

e

f/owrl)w(rz)ds(rl)de(rz)

(1.13) 4

t t
= [f ¢(n)aB (V1 v(1)aB(1)]
0 0
The distinction between our integral and that of Ito is clarified through the Correction
Formula (Theorem 3.A). Because of the ease of the calculations ensuing from our integral,

many properties of stochastic calculus are revealed. For example, in §3 we present the

Doob-Meyer decomposition for a class of nonanticipating processes. And we also present there

a discussion of integrals

t
[ BO(1))dB (1)
0

where J(r) > t. And in Theorem 4.B we provide a differentiation rule for processes
E(t) = F(t,8(8)) , € >0

where

t
F(t,x) = [ ¢(r,t,x-B(1))dR(T) , t >0 ; x e R
0

For a different approach to the Correction Formula the reader is referred to Meyer (111
pp. 321-326. And for other types of random integral operators, Bharucha-Reid [4] and Tsokos

and Padgett [13] are quite comprehensive.
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2. ADAPTED STOCHASTIC INTEGRAL

Let (9,3 P) be a probability space, and {B8(t):t > 0} a Brownian motion on it. For

0 < tl % t2 let 3\t1,t2) denote the sub-sigma-algebra of JF generated by

(8(1)-B(t1):t1 < T <t,}. A stochastic process (f(tl,tz):o LA } is said to be

2
Li-adapted (with respect to Bg) if

(i) f(-,tz) is separable and measurable on (0.t21, t, >0

b
(ii) f(tl.tz) is 3(t1,t2)-measurab1e. 0 < tl <t
A 2
(iii) f(tl.tz) e L (R, 0< t <t
t2 5
(iv) r:fo [£(r.t) ["dr < =, t> 0.

If conditions (i) and (iv) are replaced by

(i)' f(tl,-) is separable and measurable on [tl,m), tl >0
tZ g

v' Ef [fe,0|dr <=, 0t <ty
t
i

then f is said to be Lf~adapted (with respect to Bg).

Ito [7] has defined the integral

%

[ £t ,0as(x)
1

for Lf-adapted processes f, and its properties can be found in any text on stochastic in-
tegration. (See, for example, Arnold [1] pp. 64-88, Friedman [5] pp. 59-72, Gihman and
Skorohod [6] pp. 11-27, McKean [9] pp. 24-29, McShane [10] pp. 102-152, Skorohod [12]

pPp. 15-29.) We address ourselves to the problem of defining a new stochastic integral of the
form

%

J’t £(r,t,)dB (1)
1

for Li—adapted processes f.

=




To begin with we establish the following result characterizing

Theorem 2.A:

2
L+‘adapted processes.

£ty
Let Tn denote the region
ess < 0 <
(), o) Bty <1 5_t2) » DSk ok,
For any Lf-adapted process f there exists a unique sequence
€, it
2 i S
> s n= 3% y O « :
(vn(tl,t;)) € L (Tn ) ¥ m Lyl S tl tz
such that, for 0 < tl S tz, f(tl,tz) has the Lz(n) expansion
w 2% 2
(2.1) Ef(te) + J[ [ .o Ot ity T ree s TAR(T) ) ceedg(x | )dB(T ) .
mm=le. € -
o (8 | 1
In particular, for 0 < tl L3 t2'
2
.2 i = 5 " 1
(2.2) £(t),t)) = Ef(t,,t) + [ y(t,,T,¢,)dB(T)
t
1
where w(rl,x,tz) is J(tl,f)-measurable, Ai@s T . [tl,tzl. and
- 2
(2.3) 1:]0 lete, 1,60 ["at < o, ty) 20, a.e. Te [t t)]
t2 2
(2.4) E[ loe me)|%ar <oy 0 <t <6y
1
Proof:
By considering the Brownian motion
Bylt) = B(tl+t)-ﬂ(t1) OO ok - t, -t

the expansion (2.1) becomes a form of the homogeneous chaos, and follows directly from

Theorem 4.2 and Theorem 5.1 of Ito (8].

fact that f is Li-adapted implies that for t_ > O

2

-5«

The uniqueness follows from Theorem 4.3 there.

The




b 4
2T 2

Ef [|ut,re,) “at dr
00

£ ¢
2 3 -
=E/ J lute,1.t)] “ar at
0 't

t

<E[ |f(e,e)] o < w
0

from which (2.3) follows. Similarly,
tz 2 2
!:[t foe e |ar < E|f(e e )| < .
3

Since, in general, nothing can be said about the existence of a formal stochastic

differential 3t f(tl,tz) (d.a. t2 is held fixed), it is necessary to restrict ourselves
1

2 . : - . - 3
to L+-adapted processes f for which such a differential does exist. That is, we require

that
2 2 z. %%
(1) 3;; Ef(t),t)) exists, and SEI v, (tty)  exists in L7(T b B R S Byt
nw Y, 3
(ii) The series o s -
@ & A
-4 L., [ [ < D . WL 0 R YAR(T,) eeedB(T .)dR(T )
at T I g kil i (e ! n-1 n
1 n=lt ¢t t 1
R 1
: 2 2 0
converges in L (Q), for 0 < tl < t2, to an L*-adapted process f (tl,tz).
- P L
(iii) vn(tl,tz;tl,-,...,-) exists (as a trace) in L (Tn~1 ), 0 & tl < t2; B 3.,
(iv) The series
A T % T
Lo Ta i thatt S ALY R SO RO S R L L L
n=2 tl t1 t1

2 x
converges in Lz(n), for 0 < tl st to an L+-adapted process f (tl,t,)

21




Such processes f are said to be Li'l-adapted (with respect to 8). The process f~ |is
called the derived process of f, and we write

Btlf(tl,tz)dﬂ(tl)

f (tlptz) = dtl .

In many ways it behaves like a derivative. For example, if f is of the form

Fie b} = PlBlE,) -~ 60} . DSk, <%

1 2

where F ¢ cl(R), then

£7(t,0t,) = FU(B(E,)) - B(t))) , O <t <t

1 - S

In fact, if £ is Li'l-adapted, then at f(tl,tz) formally exists and is given by
1

0 -
£ (tl.tz)dt1 =at (tl.tz)dB(tl) .

So that f° is simply the negative of the diffusion part of it.

We now make the following definition. Suppose f is an Li'l-adapted process of the form

t T T
20
£(t),t,) =ft !cf: Pt t 5T o, T VAB(T ) < e +AB(T 1) AB(T )
Y 1
3. S
where w(tl,tz) €L (Tn ¥y w 0= ElesEg Then
2
[ £repas(n
ke |
is defined to be
Ssr " 3
Itft{:{: $(T i T,y e T, TIEB(T ) ¢+ dB(T _)AB(T )AB(T)
s e S | 1
(2.5)
=
+ [ £mepar
b

3 : i 2
The first term here exists since f is L+-adapted. We note that

-

|
'%
¢

TR . AP T
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t2 tz
(2.6) E[ f(r,r))d8(t) = Ef f£7(T,t,)ar
5 ¥y

and that this is zero if n > 1. Furthermore, if f is an Li'l-adapted process of the

form
A t2 Tm ‘2\
- see + T T e 2 T
£(e .t ft ft ft Pt E 0T e, T AB(T ) e edB(T ) )AB(T)
et 1
% <
where m < n and w(tl,tz) €'k ('1‘m Yol € tl ;,tzl then
2 B
1-:Jt f(r,tz)ds(r)jt £(1,t,)d8(7)
1 1
p
s ) e a0
E (ft £(T,t,) £(T,t,)dT + ft £ (r,c2>dr}'t £7(1,t)dT), m = n
1 1 1
'< 21 W
(o) B S o PUT It T, Ty e T IBLT 85T e e, T )ATAT 200dT 1y m = n = 2
£, € &
1 1
0 ' otherwise
In particular,
"2 2 w2 2 -2 2
(2.8) E|f fnepasm |t = Bl ey |far + |[ £ ear(n)
1 3 b

Using the above definition and Theorem 2.A it is now desired to extend this stochastic

integral to general Li'l-adapted processes f. To this end the following result is pre-

sented.

Theorem 2.B:

There is a unique extension of the inteqral

£
[ flreasm)
s

, 2




Consider first the series

(2.10)

-

to all Li’l-adapted processes f, satisfying the following continuity condition:
Whenever (fn:n =1,2,...} is a sequence of Li'l-adapted processes for which
: 2 0 2 X 2
lim E (]fn(tl,tz)l + ]fn(tl.tz)] + JE (e, )7 =0
n-»o
£ sup 0 2 5
[ m=l2, . EIf (r,t) |7 + [£:(tt,) [“1dt <
o
then
L
‘ 2
lim E|f £ (t,t)d8(0| =0 , 0 < t, st
N> -
1
Proof:
For the existence of the integral it is necessary to establish the LZ(Q) convergence
of the series
S
(2.9) I [ f (a0 Sy £k, s
n=1 ¢t
1
where f has the LZ(Q) expansion
@
flr,t) = Bf(e),t) + ] £ (t,t) , 0 s S
n=1
; 2,1
and fn is L+ -adapted and of the form
Y% s %
it ey = | [ ooef Pty rtyiTyoe s T DAB(T ) oeedB(T )AB(T ), O < &) <&,
t, £ t
BE 1
£Or n w1, 2.0 Here, as before
R
2l g ) : )
Paltyrty) € LT T), 0 <t <t 5 n=1,2




By assumption, the series

N
] £ty
n=1

tends to f‘(r,tz) in Lz(n) for large N, at each point 1 ltl,tzl. Furthermore,

N 2 2
nzl E|f(rt)]|” < ® E RN A N LY

and, since f° is Li-adapted,

s

[ = |f‘(1,t2)|2dT < w
&

Thus, by the theorem on dominated convergence, the series

3 3
I [ ®|E (.t | ar
n 2
n=1t
3
tz ;
tends to f E |E‘(t,t2)i dt for large N. Furthermore, by the Cauchy-Schwartz inequality,
e
N Ca 2 :
E | 21 { £ (1,t,)dr - { f‘(r,tz)d1|
1 1 1
o t2 2
cle~ty [ | miggene)|"e
b S ¢ AwieL n 2
1
tz 5
and thus the series (2.10) converges to f f‘(t,tz)dt in LY(Q).
Y
Consider next the series
o«
(2.11) Ioa, ety
n=1
where
b T
gp(t et = [ soef @ (T kit s T )ABIT,) 00 BT NABIT, ), O S 8y Sty
t;, € t
i W 5 1
-10=-




Since f: is Lf-adapted it follows that

o B SR 21
g, (t . t) = [t [ oo (BCT))=B(t )10 (&), &5t 000yt VAB(T ) <o 2dB(r _ )dB(T ) i
t t
I i J
L, % % Y g
+ft fT ft fr [B(Tl)—B(T))'a—T'Wn(T,tz;Tl,...,rn)dB(Tl)--odB(rn_l)de(tn)dr
1

and thus by the Cauchy-Schwartz inequality
t
2 2 2 0 2
E g (t),t)] S 2L, DELE (b)) | +(t2—t1)]t £ (ot ) |"an) .
1

Since fo is Li-adapted, the theorem on dominated convergence can be used as before to show

that
n %2 |
(0} 2 |
N Elfn(r,t2)|d\' |
n=l t
1
t
1 0 2 2
tends to f E If (r,tz)l dtr for large N. Hence the series (2.11) converges in L“(Q). And
t
1

now using (2.5) it follows that the series (2.9) also converges.

Concerning the continuity condition, the estimate
tz g t ;
E|f f(epadm| <2 E|f £%(1,t,)dr|
% %

2
+ A, mt VE [£(t),t,) |

b

2 0 2
+ 4t ) E ”: £ (1.t )ar|
1

shows that the integral we constructed satisfies this condition.

Some of the important properties of this integral are summarized in the following result.

=11=




Theorem 2.C:

Let

where

fa, £ be Li'l—adaptud, and set

t2
Ia(tl,tz)

L}
—

£.(TE)d8(0), 0 <t <t
%
t2
[ £ (rty)dp(0, 0 <t

%3

Ib(tl,tz)

a,b ¢ R. Then

(a)

(b)

(c)

(d)

3

(Linearity) [ [af_ (T,t,)+bf, (T,t,)1dR(T)

b

aIa(tl,tz) + bIb(tl,tz)

o1

; 2 0 _ ) I
(Smoothness) Ia(tl,tz) is L+ -adapted, and Ia wi@, T°e

3
EI (t,t) = E J’t £7(1,t,)dr

1
E Ia(tl,tz)lb(tl,tz)
b = 2
- EU; £ L) (T,e)dT + jt fa(x,tz)dr{: £, (T,t )ar]
1 1 1
t2
+E ft (£, t,)q, (T,t) + fo(T,t,)q, (T,t,)]1dT
1
b
=E [ f(1,t)f (1,t,)dr
€
1
%3
+E jt [£20T,6 )T (1,8 + (1,801 (1,¢))]dr
1
t2

g (1.t = jr Ef (1,,t)d8(1))

t

IT

+1

T2
g L v,va,n(.fl't')”?.''"'[n&l)da(tl)“'dl{hn)dﬁ(‘nﬂ

2 Tn
/
1

&
i~ 8

n=1

w) P

)




and the functions

In particular,

Proof:

{wa o 1,2,...} are as in Theorem 2.A. And 9y is defined analogously.
2 "2 2 °2 2
= T T Wl
E |1, (t,t)] E(f le, (e [“ar + |f £.(T,t,0ar| )
t t
1 1
2
+ 2E | £.(T,t)g (T,t,)dr
t
1
2 3 £
=€/ }fa(r,tz)l ar + 2E [ £L(Tit) I (Tt )dr
b | S

All four parts follow directly from Theorem 2.A, using (2.5), (2.6), (2.7), (2.8) and

the observation

and similarly for

b

galtyrty) = I (t,,t,) - { £2(1,t,)dt
1

9

w]l3e




§3. CORRECTION FORMULA
In this section we present the following
Theorem 3.A (Correction Formula):
2,1
let f be L, -adapted, and assume

k)

f lf(t.t)[zdt < o
i |

L2 ¢ 5
Ef [ |f(t,t)|%T at < »
E, k

1
Then
£ &
{ [ f,v)dp(erag(n)
tl 43
S1s i
=/ [ fr,0dBdg(r) + [ f(t,t)de .
i e <
Proof:

If f 1is a deterministic function, the result follows directly from (2.5). So let f

be of the form

t Tn Lo
(3.1) £(T,80) = [ [ «oof p(r,tit
i

X

oot )AB(r )eeedB (T ,)dB(T ), Tttt

iy 2

where n > 1. Then by (2.5)

t t Tn+l ta
| f,0)a8 () =,ft J ---It P (T kit et VB (T ) e B (T B (x )
e 1% 1
€
+f oo ' BEtEE
tl

and thus

-14-




b 1
[ | fuevras(mas(e)
b T
€ v “n+l 1
.{ jt ]; ); Pt T Ty T )BT ) <o edB (T )AB(T 1 )dB(T)
: e B | 1
e B
+ [ | fureesner
| -
1
Next let
£
glt,ty) = { f(r,0)dB(t) , ¢ <t<t, ,
so that
tz Tn+1 ‘l’2
g(t,t,) -{ jr 4 CUT T i Ty e e T)ABIT ) oo edB(T )AB(T ), &) < T <t

5 -
Then by (2.5)
- -

2 2
J | fltr,wasras(n
t]. T
t2 T Tn+1 ‘2
= { { { ...{ ¢(rl.t;12,...,1n+1)d3(11)...dB(Tn)dB(Tn+1)d8(r)
) s PR | &
2
+ f g‘(r,tz)dr .
b |

Since f(t,t) = 0 it is enough to show that
t2
g7(r,ty) = [ £(1,0)AB(L), t; <t <t

2 '
T

and this is clear by inspection. Thus the Correction Formula holds if f is of the form

(3.1). Finally, using Theorem 2.A and the continuity condition of Theorem 2.B, it follows

that the Correction Formula holds for any Lf’l-adapted process f

=) Sa




The process

is, by Theorem 2.C, Li'

t

2

ety = [ fepasn

t

1

b

) n(tl,tz)

However, it is of greater interest to compute

since this is an Ito-differential (not just a formal notation), and

&

HlE. vt} = f
b g &

The Correction Formula can be employed to this end.

Theorem 3.B:

at n(tl.tz)

2

Let f be Li'l-adapted and set

Suppose

2
n(t ) = [ £(1,t,)d8(7)
&
1
f(tl,tz) = f(tl,tl)
3 b

where a, b are Li'l-adapted processes satisfying

E

o™n

Then

t

1

H 2
[ Ib(e,6) %At <
0

2

BTn(tl,T)

1

1

2 2 2
of Uate e [ + [b(t . t))[“1dt at

~16-

1—adapted. and, as such, possesses a formal differential

= J‘t a(t),nar +ft bt ,T)ap(v), 0 <t

|7

2




Y
{
i
:

*
2
3, n(ty.t)) = [blty,t,) + [ al7,t))ds(v]ladt,
2 t
1
it
+ If(t,,t)) + {. b(t,t,)dB(1)]dB(t,) , 0 <t <t
1

Proof:

The theorem follows directly from the Correction Formula. Indeed,

t2 T
f [b(t, 1) + f a(t',1)dg(t")l]ldr
tl tl

t
2 g
+ [ [f£(t,0 + [ b(t',1)dB(t')]1dB(T)
t >

1 1
t2
= [ f(tr,T)dB(T")
1
t2 t2 t2
+ [ f atr,mar + [ b(r',1dB(T)1dA(T")
€ izh S
t2
= [ f£(1',t,)ap(t")
2
Ly

It is worthy of note that although the process (here tl is fixed)

t
x(t) = [ £(r,t)dB (1)
3

is not a martingale, the Correction Formula does provide its Doob-Meyer decomposition.

if
t2
fe,e)) = [ yit Tt )a8(0)

=

=17=

Thus

f
i
g
!

e

— e — -




(cf. Theorem 2.A), then

*
[ E(r,t)a8(7)

%
" 4
(3.2) = [ f wlr . te)ds(r))1as(n)
%15

t
+ [ wr,T,var

5

For example, the decomposition for

t
B(t) [ £(1)aB(T)
0

is
t T )=
[ B(E(T) + [ £(r)dB(T)1dB(T) + [ £(T)dT
0 0 0

As another application of the Correction Formula, let A(t) be a strictly increasing
differentiable function of t on [tl,tzl with
€3.3) A(El € oty 2k < t2
Suppose we were to define, for £y St st

1 ' t < A(D)

L e, n)y =
0 ’ > AET)
and substitute this in the Correction Formula. Then

) t,

f BONT)AR(T) + [ g0 Hn)ag(n
t X(tl)

(3.4)

=
5 B(tz)B(A (tz)) o B(tl)B(X(tl))

=18=




This is an integration by parts formula. Of course the difficulty here is that f is not

2,1 : g . . Ka
L*’ ~-adapted. But in this case (since f is deterministic) the Correction Formula can be

verified directly from (2.5). In fact, as long as the process

t2
glr,ty) = { £(L,E)AB(N ., ¢ <T<t, |
has a derived process g°, then
t2
[ atras(n
t
1
%1 “2
= [ [ f(nvdsmago + [ g-(rnt)dr .
e T t
s 1
Now we check that
BA(T)) - B(1) : g2t X
g(T,tz) % =
B(t,) - B(T) : Ny ST XE, .

Because of (3.3) it follows that g” = 1. Thus (3.4) is established. However, a more diffi-

cult question involves the case where

(3.5) AE) > € tl st

2 :
and the strict inequality (3.3) no longer holds. Here we have

- ' Al(T) # 1
g (T.tz) =
L = (X & XV0)) ' Alr) =1 .

Thus we arrive at the following extension of (3.3).

ey £,
-1
i BOA(T)AB(T) + [ BT (1))dB (1)
€, A(E))
=1
(3.6) = B(E,)BO(E))) = B(EIBOA(E))

- [ @A (mar
A

-19-




where A 1is the set {1 ¢ [tl.tzl:x(x) = t}. Now we merely note that
[a@ A at(mar = [ar

and we arrive at the following:
Theorem 3.C (Integration by Parts):

Let A(t) be a strictly increasing differentiable function of t on (tl,tvl, with

keeY e, E bt

1 >

Let A be the set ({t ¢ [tl,tzlzx(t) = t}. Then

AHey) 5

-1
f B(A(T))dB(T) + [ B(A T (1))dB(1)
t ()

-1
— B(tz)B(A (tz)) = B(tl)B(A(tl)) = LX)

where  is Lebesgue measure.
Similar techniques like those used to establish Theorem 3.C can be used to generalize

the Correction Formula for functions f defined on

il {(T.t)=A1(T) Aty <t <A (T) At}

where xl, AZ satisfy the conditions of Theorem 3.C, and ), < A,. We merely extend the

1

function f defined on S to the whole triangle, t, < T < t <

1 by setting it to zero

2
on the complement of S. The reader can check that

[t trag(trag ()
(3.7

= [[gf(r.)dp(rIas(t) + [ £l t)at

where

ARw S8 g v,y w g} .

=20«




§4. CARATHEODORY PRINCIPLE

A particularly interesting class of stochastic processes are those of the form

f(tl,tz) % @(tl.tz,ﬂ(tz) : B(tl)) b QLS ty = €
The conditions for f to be Lf-adapted are
2
RS s
hd 2l -t )
2 2Tk
(4.1) [_w loce, e %) |%e dx <® , 0zt <t,
2
x
t 2 e
® "2 [d(T,t 0 | e~
(4.2) — e g = w00
- () vtz-T & -

. 2 ;
And the conditions for f to be L+'1-adapted are that the functions

5
8
ot

ro -

o
+ 2)¢(tl,t2,x)

L o (t
o . X

lltzlx) o

also satisfy (4.1) and (4.2). For such processes f the integral

%

[ flrt)de(n
t1

can be related to an Ito stochastic integral. In fact we have the following result:

Theorem 4.A (Caratheodory Principle):

Let f be an Li'l—adapted process of the form

f(tl.’1) - ¢(tl.t2,8(t2) - B(tl)) T - -

="1="2
Then
5
[ E(e)AaB(T) = Flt £ ,8(t)) , 0 <ty <ty
t
1
where
e
F(t,,t,%) = [ e(tit,x - B(AB(T) , 0 <t <t,; xcR
t
1
-21-
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The proof relies on the following two lemmas.

Lemma I:

*
Let Hn be the Hermite polynomial of degree n, where n > 1. And let a(tl,tz)

differentiable in tl and satisfy

be

5
4 2 3 2
fo Hatte) [+ |5-atnt,) [Tldr <=, ¢, > 0
Then
a
[ attt)n (t,-1,8(t,)-8(1))dB (1)
t
1
= Late,t)m (6 -t ,8(t)-B(t.))
n+l P nel 2 LT 2 1
1 b
MYST { B YEReEIR, o (B TR L)~ T) J oy
1
t2
+n )'t alt,ty)H ) (£,-7,B(t,)-B(1))dr , 0 <& <t,
1
Lemma II:
Theorem 4.A holds for functions ¢ of the form
¢(t1,t2,x) = a(tl,tz)un(tz-tl,x)
where a satisfies the conditions of Lemma I.
Proof of Lemma I:
The proof relies on the fact that
3
=F Hn(tz- 1,8(t2) B(tll)
(4.3) t2 Tn 12
=jt jt J‘t dB(t))+++dB(r _)aB(T) ,» n = 1,2,...
) 1 | 1
*
These polynomials are defined by 2 2
oW =
B (e, = (-t)" e° 2-q ** ,n=0,1,... s t2 0 xR
n %" -

-22-




(A very short proof of this result appears in McKean [9] p.

2
a(r,tz)Hn(tz-l,ﬁ(t2)-ﬂ(1))d8(x)

1

1
nt

[ad . o

n+l
a(rl.tz)dﬁ(1l)---dB(rn)dB(rn

t

:

2
<

dB (t

1)---dﬁ(rn

2 Tn_ T
R
1 1

s
+ [ atty)
by

2 Tn+l L

- a(tl.tz)

A
[ad S 4

By

t2 Tn+1 i
5 iR
T %

O st
3T it

(ad LI 2
N~

1 T

t €

2 2
+ [ atuty)f
tl T

2 'n-1
/
T T

1
T T a(tlltz)H“+l(t2-t1,8(t2)-8(t1))

AP, oy
(n+l)! &

1

3

{ alt,ty)H
1

1

METS -1

from which the desired result follows.

Proof of Lemma II:

Let
E .2
AX = 2 A (t2 tl)

ok(tl't2'x) - a(tlrtz)o '

-23-

"'f dB(Tl)"'dB(rn)dB(rn

Y dB (1)) +++dB(r )AB(x

oo f dB(r)) +--dB(r _

37.) Thus,

)

+1

_2)d6(1n_l

+“

+

2)d8(rn_1

2 & &
/ ar (T E)H (ko -v,B(,) - (1) )dr

(tz-r,ﬂ(tz)-s(r))dr

by

)dr

1)d'r

Ydr

£2.5)




Then (evaluate the integrall)

2

a0 = [ (T, x=B(1))aB (1)
t
1

rk(tl'tz

1 1 Ax=B(t,)]
= 3 A (t etyex=Blt))) - Talt ,t))e

%2

+Af (&, Tx=B(1))dr

lad
—

- Mx-8(01 = 5 A7 (e,
v i £ T3 l(‘.tz)o dr , 0 = £ o s 1 K€ R

1

and thus

1 1
'A"‘l"z'“‘z” ol .X“‘L'tz'a(tz)-ﬁ(tl” iy a(tx.lz)

by

¢ Af 8y (6T, BLE) BT AT

)

g e MB(EN B0 = 3 AT (E0)
il {r w l(‘,tz)(O ©  =llar, O < ty 2%

1

On the other hand,

L n
& A & )
0,(t) t%) nzo B a(t) E B (Eomt),X) + 0 £ &) ¢ by 1 X R

and thus, by Lemma I,
‘2
ltoxu.:z.a(c,)-am)aam

1

1 1
et 5 QX(tlutch(tz)'S(tl)) v a(t‘.t,))

i
g iy MB(E) -8 = A @0 ‘
+ :] 37 atnty) (e ~1hh '
t |
1 {
g |
. |
+ x]t §, (6= B(E) =BT L 0 < &) <ty
1
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And from this it follows that Theorem 4.A holds for {¢A:A ¢ R}; that is,

5

[ o) (e,-1.8(e)-B(0)aB(n) = Palt oty BlE,)) . 0 <t <t 5 AeR

Lt

By differentiating this equation n times with respect to ), and setting X = 0, it

follows that Theorem 4.A holds for the function

Py t,x) = alt),t)H (t-t,,x) , 0 <t <t, ;xeR

1
Now we are in a position to present the
Proof of Theorem 4.A:

Let ¢ satisfy (4.1). Then, because of the completeness of the Hermite polynomials,

there exists a unique sequence {an(tl,tz):n = 0;lse:- 3 0% tl = t2 such that
o
= - < < - P
O] ) a (6t )H (€ ,%) , 0 <t <€, 1 xeR
n=0
: 2
in the sense that = X
Lo N 2=t 4
3 2 2
lim f l¢(t o XX} = Y a (t &8 (€ =t ,x)l e d =0 , 0 <g. <¢
o — — 2
b o S n=0 {q it e G D G O 1 2

Furthermore, since

3
-a—xﬂn(t,x) =n Hn_l(t,x) = 1,005 285 0; x ¢ R

it follows that if §§'¢(tl,t2,x) satisfies (4.1)

then
d b 3
a PlE ity x) = nzo a (b ty)an H (-t hx) , 0 <t <t) ;i xeR
in the same sense. Finally, since
('"‘—l—az—m(tx)—-n(n—l)n (t,%) , t > 0; R
ot T i fi=2= " 4 2
Ix
) 1 }2
it likewise follows that if (;L— %3 J—E)¢(tl,t2,x) satisfies (4.1) then
1 ax

-25-~
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(ii— e j£~ (t .3 2.1 32
L 3x2)° jrEgest = nZO (atl = ;;5)an(‘1't2)“n(t2't1’X) X
0 < tl < t2 i XeR
in the same sense.
Now we define for n = 0,1,...
fn(tl,tz) = an(tl,tz)Hn(tz—tl,B(tz)-B(tl)) 0 O i_tl & t2

Because of (4.2) and the continuity condition of Theorem 2.B it follows that, for

C<E <t

1 2
¥ 3
[ R Gt (r)
n=0 t, " 2
2
t2 f
tends to f f(T,tz)dB(T) in L7(f) for large N. Furthermore, if
o
t2
Fo(t,t,,x) = £ a (T, t)H (t,-1, x-B(1))dB(1) ,
1
n=20,1,... ; 0 < tl = tz
then
N
DAL
n=0

tends to F(tl,tz,x) in LZ(Q), in the sense that

&
= et
o N D 2(t2-t1)
lim f E IF(tl,tz.x) ~ Z Fn(tl't2'X)| e dx =0, 0 < LSt
Now = n=0
2
&
Vel v oo S
lim [ E I3 Fley ot = [ oo F (e 6,00 | % dx=0,0<¢t <t,
N+w =~ n=0

Since these conditions imply that

N
I F () .t,8(t,))
n=0

«J=




tends to F(tl,tz,ﬁ(tz)) in L2(Q) for large N, O < t

1 & t2, and since, by Lemma II,

for n = 0Q,1,.

£

ft £(T.)dB(T) = F (t,t,,8(t,)) , 0 <t
1

<ty

1 2

the proof of Theorem 4.A is complete.

[}
As a corollary of Theorem 3.B we present the following result.
Theorem 4.B:
Let
b
n(tat,) = [ dlr,t,,8(t,) - B(x)AB(D)
t
L
where
2 2
208 9 1 i it X B
¢(t1,t2,x). % ¢(t1,t2,x), (at s 2)¢(t1,t2,x), (at + 3 2)¢.(tl,t2,x)
. 1 ox 2 ax
satisfy (4.1) and (4.2). Then
€
. 2
Btzn(tl,tz) = [¢(t2.t2,0) + { % ¢(r,t2,8(t2) = B(T))dﬁ(r)]dﬁ(tz)
1
3 o2 3 1 32
* o= 9(e,,t,,0) + ]t f, N MR BRURRCIGL, (B2 2 Yy
1

Proof:

The result follows directly from Theorem 3.B once we observe that, by Ito's Formula,
3t2¢(t1,t2,8(t2) = B(tl))

2
) ) L 3
~ % @(tlltz,B(tz) < B(tl))dB(tz) + (Sgg +3 Bx2)¢(t1,t2,8(t2) S B(tl))dt2

.

LS

e e e e




§5. ITO-VOLTERRA EQUATION

In this section we study the behavior of the solution to the problem

t t
(1-v) £(t) - [ o(t,t)E(T)AB(1) - [ by, t) f(Ddr = F(t)
(0] o]

where o, b, F are functions. A more general class of equations is analyzed in Berger (2],
(3]; but to make this exposition self-contained, the existence-uniqueness results for (I-V)

are presented here.

Theorem 5.A:

Let ¢. b, F be functions satisfying

sup 2 _
B T(o(tl,t2)[ = ||o([,r <@
P gt bl <o
oS SR S Uit - ' T

R LT L

for each T > 0. Then there exists a solution g(t) of (I-V) on [0,T] for any T > O

such that |

sup

(5.1) 0<t <

cElE® ] <o .

Furthermore, if E(t) is another solution of (I-V) satisfying (5.1), then E is a version
of ¢&.
Proof:

To establish existence we construct the successive approximates to (I-V). Thus let

Gty =F(t) , t20

3 t
(5.2) £,(6) = F(t) + foa(T,t)En_l(r)dB(r) + {)b(r,t){n_l(r)df.

B® ,8vc0e 3 € O

-28-




The first property of these iterates we establish is

sup

2
Of_tiTE];“(t)‘ S SR A )

(5.3)

This is shown by induction as follows.

Sup 2 2 sup 2
O:_tszlgn(t)l _<_3”F|]T+3NTO:tiTE|gn_l(t)| 420
where
sup ) 2 t 2
Ny, = oith[{)IO(T’t)l d-r+t{) |b(r,t)|“at] , T > 0

The next property we establish is

o - , (amy”
(5.4) Oit:TE]ngl(t) - g, (0] < 2N (1 + |E|[D) = T @
where
2 2
MT = ”0”'1‘ % T”b“rr =

This is shown by the following observation

2 = 2

E g ,,(0) - £ (0] izmTJ:)E lgn(r) e tfaE e =10, oz

Thus, by (5.4), for each t ¢ [0,T], the sequence gn(t) converges in LZ(Q) to a random

variable ¢g(t). The process &(t) is &(0,t)-measurable and

sup 2
OitiTEIE(t)l Coi
Since
" sup ) 2 _
Ln o o Elg, 0 - s 0
n-o — —

taking limits in (5.2) is valid, and &(t) is, therefore a solution of (I-V).

To establish uniqueness let £(t) and E(t) denote two solutions of (I-V) satisfying

(5.1). Then

-29=




t
E |£(t) - c(c)|2 < 2MTj E |g(0) - E(T)Izdr ]
0

and thus

E |g(t) - é(t)|2=o (S

The successive approximates (5.2) are particularly interesting in view of the Correction

Formula.
This is the content of the following

Theorem 5.B (Resolvent Formula):

Let o, b, F be as in Theorem 5.A, and also satisfy
sup a3 2 3 2 =
(5.5) T  a [3e- Pty t ) [T <, T >0
== = 4! 1
sup d 2
(5.6) 0<t<r P  <w, 230 .
Define the iterates o bn as follows:

alltl,tz) = a(tl,tz) v bl(tlltz) =

)

2
One1(tyety) = [ o (timolr,t a0
t
X
%
Dep (tyrty) = { bt D)o(r,t,)dB(x)
1

Then the resolvents

o
r (t .ty = nZ1 O, (8 /) , T (L, L) =

exist and are Li'l—adapted processes.

“30=

In fact the solution to (I-V) can be represented as an adapted stochastic integral.

Furthermore the solution to (I-V) is

bit),t)) , 0 <t <t
t2
+ f on(tl,r)b(r.tz)dr ' "
t
1
3
+[ b (e, 0b(r, t)dr
t
!
=12,... 30t <ty

=]




£
£(t) = F(t) + [ r (1,t)F(1)dB(1)
0 Q

This result is actually a corollary of Theorem 5.A.

£ n
En(8) = F(&) + [ [ ] o (1,6)]F(r)dB(x
0 k=1
t n
5.8
( ) + I [ Z bn(T.t) = glT,T)
0 k=1
n

Thus the convergence of the approximates implies the exi

in (5.8).

Actually, because of the restrictive TE assumptions on

such that

E |t (t) - gn(t)lz <

n+l

¥ p{lr,n“(t) - En(t)l
n=1

-31-

(5.7)
t
+ [ Ir (1,8) - olr,0r (1,0)]F(DdAr , ¢t >0
0 g i
Proof:

Indeed, by the Correction Formula,

it follows that the successive approximates gn are given by

)

n=1
! o (x/0)IF(0)dr
k=1

o2y £ D

stence of td, rb. The conditions

(5.5) and (5.6), together with the continuity condition of Theorem 2.B, allow us to take limits

o, b, the convergence of the

approximates En is almost sure convergence. This is because there exists a function c(t)

This is actually the content of (5.4). And thus the series

l
> ~5)
n

converges for t > 0. So that by the Borel-Cantelli Lemma, £ (t) converges almost surely
= n




for each t > 0. Similarly the conditions (5.5) and (5.6) imply the almost sure convergence
of the terms in (5.8). And thus the Resolvent Formula provides trajectory-type information.
For examples concerning the use of the Resolvent Formula, and for additional information

about the solution of (I-V), and for the case where o, b, F are processes themselves, the ;

reader is referred to Berger [2], [3].
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